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Criticality in a dynamic mixed system
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We suggest a dynamic generalization of the simplest static hierarchical mixed model introduced by
Shnirman and BlanteiPhys. Rev. Lett81, 5445(1998; Phys. Rev. E60, 5111(1998. We show that the
stationary solution of the dynamic mixed mod@®MM) demonstrates, in general, a linear form of the
magnitude-frequency relation and may be considered a self-organized critical system. The dynamic mixed
model demonstrates three principal kinds of system behavior: stability, catastrophe, and scale invariance. We
show that the catastrophic area exists for all parameters of the mixture, and obtain three analytical expressions
for boundary conditions of the stability and the scale invariance domains. As in the static model scale invari-
ance appears as a result of a strong heterogeneity of the mixture. We describe how the magnitude-frequency
relation reflects parameters of the heterogeneity and healing conditions for different domains of system behav-
ior. Deviation of the DMM from the static mixed model and possible applications to earthquake prediction are
discussed.
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[. INTRODUCTION strong events extending results obtained for the static one
[13].

Considering self-similar hierarchical models we are inter- Stable critical behavior is obtained for different models
ested in two problems: the origin of self-organized criticality referred to as self-organized critical systems. For some of
(SOQ and its possible relation with prognostic features ofthem the origin of SOC is understo§8,14]. A lot of work
the system. Besides the theoretical interest these problenase recently devoted to investigations of the origin of SOC in
have wide applications in geophysics, in particular in earthsand-pile model$4] and describe possible ways to obtain
quake prediction. The well-known Gutenberg-Richter lawdeviations from criticality for such systenj45]. The self-
establishes the linear form of the magnitude-frequency relaesrganized criticality may be also obtained as a result of a
tion for earthquake$3]. It is a basic statistical relation of feedback relation that attracts the system to the critical point
seismology usually associated with the self-organized critiand governs a linear form of the magnitude-frequency rela-
cality phenomenoi4,5], however, its origin in seismicity is tion in average[9,16]. In [1] we have suggested a static
not completely clear. Statistical observations show that thdéierarchical mixed model and demonstrated that the self-
slope of Gutenberg-Richter law is different for different seis-organized criticality appears as a result of strong heterogene-
moactive regions and period of tinj8]. The slope for main ity of destruction conditions. However, the static model is
shocks differs from the slope when aftershocks are includedslightly related with seismic process. Now we suggest the
The slope for aftershocks series differs from the slope oflynamic model and show that the heterogeneity determines
foreshock series. The unity slope was obtained only for theriticality as a general form of system behavior. In particular,
average world seismicity7]. Thus, the criticality of seismic- scale invariance appears in the DMM as a result of strong
ity is more complicated than the self-organized criticality heterogeneity of the resistance to the stress.
realized, for example, in the sand-pile mo{4]. It was ex- Critical behavior of the system is indicated by a linear
pected that the slope of Gutenberg-Richter law may be remagnitude-frequency relation. The slope of the magnitude-
lated with fractal scaling properties of the system of faults,frequency relation may be constant in time, like it is for the
however, it is not proved8]. sand-pile mode[4] or not, like in the case of the attractive

Scaling properties of seismicity are related with the earthpoint [9]. The origin of different slopes of the magnitude-
guake prediction: variations of the slope and the upwardfrequency relation in seismicity is not more clear than the
downward bend of the magnitude-frequency relation can berigin of criticality itself. Assuming that the heterogeneity is
successfully used for the earthquake predicfi®yiQ]; sev- the origin of SOC, it is easy to obtain different slopes de-
eral algorithms of earthquake prediction use the variation opending on parameters of heterogeng¢#y; Below we show
seismic activity as a prognostic functiordll,12 that may that for the stationary solution of the DMM the slope of
be also reformulated in terms of variation of the magnitude-magnitude-frequency relation reflects parameters of hetero-
frequency relation. The exact knowledge of the nature ofjeneity, like it was for the static model, but it also depends
scaling laws in seismicity is not necessary for the applicatioron relaxing features of the system.
to the earthquake prediction but may be useful for the im- Predictability of strong events in SOC models was con-
proving of existing algorithm as well as for the understand-sidered by Pepke and Carlsph7]. They have shown that
ing of the origin of successes and fails. In the present papatifferent predictability of strong events may be obtained ap-
we investigate scaling properties of the dynamic mixedplying the same algorithm of prediction to different SOC
model (DMM) and try to relate them with predictability of systems. Self-organized criticality of the sand-pile mddél
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containsk or more defects in the relevant group of the infe-
rior level. Different kinds of elements are mixed with con-
centrationsa,, where a;+a,+az=1. We assume self-
similarity of the mixture, therefore, concentratiomsare the
same for all levels of the system. A density of defect&tbf

+1 kind at levell in time t is denoted ap,(l,t), then the total
density of defects is expressed as a weighted sup of
D 1 p(.D=aipy(1.t) +azpa(l.0) +agps(l). (D)
Elements: Transitions: B. Relaxation
() unbroken O~ @  appearance The healing process determines the transition of broken
@ et ®-0 healing elementgdefects back to the unbroken state. The healing is
similar for all kinds of elements and depends only on the
FIG. 1. Hierarchical system with branching numioer 3. scale level. The healing intensig(l) at levell is defined as
follows:
is characterized by the bad predictability of events of large _ |
size[17]. When the linear form of the magnitude-frequency B =BoC. 2

relation is a result of attractive critical point, then the p ¢ f heali laxi . f th

magnitude-frequency relation depends on time and its tem- arameters ot healing govern relaxing properties ot the
- . ; system.

poral variation allows to predict strong events in the system

[9]. In the static hierarchical mixed modgl] the change of

system parameters is reflected in the magnitude-frequency

relation that allows to predict the increasing probability of  Unlike homogeneous system, the present model has three

strong event$13]. For the present dynamic mixed model we kinds of appearance intensity(l,t) relevant to each kiné

show how relaxing features of the system affect prognostif element, kinetic equations may be written for each kind of

properties of large-size events. element

We describe the model in Sec. Il and its behavior in gen-
eral case in Sec. Ill. The slope of magnitude-frequency rela-  P(l,t+1)=py(I,)[1—=B()]+[1—p(l,t)Jay(l,1).
tion is derived from system equations for different domains (€)

of model behavior in Sec. IV. Boundary conditions of the o _ .
scale invariance domain are obtained in Sec. V. Section V-Irhe second term in right side of E(B) denotes the density

contains conclusions and discussion of obtained results if €W defects, referred to as events, so the density of events
respect to the earthquake prediction. of kth kind q,(l,t) is expressed as follows:

Au(ht+ 1) =[1—py(l,t)]Je(l,1). (4

We suggest a hierarchical model — DMM — that may be'(lf’pgk%e?)slty of all events at levein timetis a weighted sum

considered as a generalization both of static mixed mode
[1,2] and of the homogeneous hierarchical model of defect q(l,t)=a,q,(1,t) +a,q,(1,t) + asgs(l ). (5)
developmenf18].

We consider a hierarchical model with branching number A kinetic equation for the density of all kinds of defects is
n=3 and two possible state of elements: broKdefects
and unbroken onéFig. 1). Evolution of the system is gov- p(l,t+1)=p(,)[1-B)]+[1—p(,t)]a(l,t), (6)
erned by two opposite process: appearance of new defects
and healing of old defects. An unbroken element transit tovherea(l,t) is by definition the appearance intensity of new
the defect state, when a critical configuration of defects apdefects.
pears in the relevant group of three elements of the previous
level. This rule determines the inverse cascade of destruction D. Appearance of new defects
in the model.

C. Kinetic equations

Il. MODEL

The value of the appearance intensitff,t) may be ob-
tained by substitution of Eq$1l) and(3) into Eqg. (6), and it

A. Heterogeneity satisfies to the following equation:
In the homogeneous modgl8] there was the same criti- 3
cal configuration for all elements of the system: two or more | _
: ; D[1-p,t)]= a I, O[1— [,t)]. 7
defects in a group of three elements determine the defect a(lOi1=p(l0)] kzl kel =p( L)) 0

state of the relevant element of the superior level. Following
[1,2] we assume that there are three kinds of elements in th€he bottom level of the system differs from others, because
system: the critical configuration fdtth kind of element defects randomly appears at this level and all elements
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are similar. Appearance intensity of new defects at the botdefect can appear in a group of three elements of levidie

tom level is assumed to be constar(tlt) = «y. latter condition establishes a relation between defects of two

It follows from Egs.(4), (5), and(7) that the density of consequent levels: the probability of an unbroken element
events is relevant to a group of three defects is assumed negligible.

We assume that different kinds of elements of two conse-

g, =[1=p(.D]all.y). (8) quent levels are distributed independently, therefore, appear-

Appearance intensities of new defeatg(l + 1) at level ~ ance intensities of the superior level(l+1t) are calcu-
| +1 are determined by the conditional probability of critical lated using the appearance intensif},t) and the density of
configurations of the previous levélprovided that a new defectsp(l,t) of the previous level

[1-p(,0) P 3(,1)+3a?(1,0){1— a(l,t)} + 3a(l,t){1— a(l,1)}?]

a1(|+1,t)= 1_p3(|'t)
N 3p(1,0[1—p(,HP[@P(1,1) +2a(1,D){1—a(l,1)}] N 3a(l,t)p?(1,t){1—p(l,)} ©
1-p3(LY) 1-p3(1,1)
[1-p(,0)*[3(,1)+3a%(1,0){1—a(l,0)}] 3p(,H[1—p(I, )] a?(,t)+2a(],t){1—a(l,t)}]
a2(| + 1,t) = +
1—p3(1,1) 1-p%(lb)
2 _
N 3a(l,t)p (l,?[l p(l,t)] 10
1-p3(l,t)
_ 3.3 _ 2 2 2 _
a3(|+1,t)=[1 p(l,t)]Pa”(1,t) +3p(1,O)[1—p(l,t) e (l,t)+3a(|,t)p (1,01 p(l,t)]. (11
1-p3(1,1) 1-p3(1,t)
|
When concentrations of the mixtui@,, parameters of a(l)
healing (85.c), and the appearance intensityy) are fixed, p(l)= FOETOL (13
then the system is governed by kinetic equations and the
inverse cascade of appearance intensities. There is a station-
ary solution of this equations fdar— . Densities of defects, a()B()
densities of events, and appearance intensities of new defects a(h)= m (14

tend to their limits when time grow(l,t)—p(l), q(l,t)
—q(l), a(l,t)—«a(l). Below we investigate scaling proper-
ties of the stationary solutiopp(1),q(l),«(l)] for different  If c<1 then the healing intensity tends to zero for top levels
parameters: concentrations of the mixtageand the appear- of the systen{2). In this case Eq(14) means that the density
ance intensity of the bottom level,. Parameters of healing of eventsg(l) always tends to zero, when levegrows and
are also fixed, but their influence to the system behavior igvents of high scale are less probable than small events. It is
estimated. the most natural situation, so we mainly consider this para-
metric areac<1 with some remarks about system behavior
under another conditions.
Ill. SYSTEM BEHAVIOR In contrast to the density of events, the density of defects
p(l) depends on the relation between appearance and healing
intensities. Three kinds of the asymptotic behavior are pos-
sible when level grows:
Stability. The appearance intensity¢(l) tends to zero
faster than the healing intensiB(l). Then density of defects
p(HB(MH=[1—p(H)]a(l). (120  Pp(l) also tends to zero, when levelgrows p(l)—0. This
kind of behavior is referred to as stability, because top
levels of the system remain unbroken.
It means that the appearance of new defects and the healing Scale invarianceThe appearance intensity(l) tends to
of old defects compensate one another. Densities of defeceero, similar to the healing intensitg(l). In this case the
and events may be expressed from E&s.and (12): density of defectg(l) tends to a constant value different

Let us pass to limit fot—< in the kinetic equatiorn{6).
The limit density of defect®(l) at levell satisfies the fol-
lowing equation:
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from zero and unity. This kind of behavior is referred to as ato unity. This kind of behavior is referred to agatastrophe
scale invariancebecause all scale levels of the system arebecause top levels of the system are completely destroyed. In
similarly destroyed. this model catastrophic behavior is always realized dor

Catastrophe.The appearance intensity(l) tends to a —const, however, it is not obligatory in general case.
positive constant value or it tends to zero slower than the Let us consider Eq(7) for «(l) close to unity. In first
healing intensity3(1). Then the density of defecf¥|) tends  order of[1— «(l)] we obtain

[1-p(1)%a(1)®+3p()[1—p(1)]*a?(1)+3p?[1—p(])]a(l)
1-p(1) ’
for all k=1,2,3. It follows from Eq(7) that 1—p(l +1) is equal to zero, otherwise dividing by-1p(l + 1) we obtain that the

appearance intensity(l + 1) also satisfies to Eq15). The former case means catastrophe; in the second case dividia)oy
after simple transformation we obtain

a(l+1) [1+ p(N{1—a()}?+[1+p(H{1—a()}]+p()
— ) (16)
a(l) 1+p(h)+p4(1)

a(l+1)= (15

It means thata(l +1) is greater thamx(l), when «(l) is In order to compare model result with seismicity we have
close to unity, therefore the catastrophic behavior always exto define the magnitude-frequency relation for the model. We
ists when the appearance intensity of the bottom leyels  assume that the size of elements in the system grows with
big enough. It is not true for other kinds of behavior. De- level S(I)=S,3' and the number of elements similarly falls
pending on concentrations of the mixture three kinds of bewith level Ng(I)=C3-"' (C denotes number of elements at
havior are realized whea run from zero to unity. the highest level of the system Respecting the relation 17
Transition from stability to catastrophdf «y<a., then  between the magnitude of an earthquake and the linear size
densities of defects tend to zero, andvif> ., then densi- of its source area, we consider the magnitude as a character-

ties of defects tend to unity. In the critical pointy=«,.,  istic of the defect’s size at leve)
densities of defectp(l) tend to a constant value defined by
Eq. (13) (Fig. 2). The scale invariance exists in a single point M(1)=1 logy3 (19)

of phase transition.

Transition from scale invariance to catastrophié. «
<a,, then densities of defects tend to a constant value dif{we use decimal logarithm in respect to the geophysical tra-
ferent from zero and unity, and if,> a., then densities of dition). Expressing the average number of events at the level
defects tend to unityFig. 3). |, as follows:

Total catastrophelor all values ofry densities of defects
p(l) tend_t_o unlty_(Flg. 4). _ N(=c3-"'q(1), (20)

The critical pointa,, determines the boundary of catas-
trophe and depends on concentratiensk of the mixture
and parameters of healir§ig. 5). we obtain from Eqs(20) and (19) the magnitude-frequency
relation for events in our model, which is the analog of the
IV. MAGNITUDE-FREQUENCY RELATION Gutenberg-Richter lawl8) for seismicity,

The magnitude is a logarithmic measure of the energy of
earthquakes. A linear relation between the earthquake mag-
nitude of and the size of the earthquake source area is estab-

logioN(1)=—M(l)+log;pq(l)+ const. (21

lished in averagél9], It is obvious that the form of the magnitude-frequency
relation is completely determined by the density of events
l0g;0S~M + const. (17) q(l), which depend on levél A power form convergence of

densitiesq(l) to zero determines a linear form of the
A linear relation between the logarithm of the number of magnitude-frequency relation. Like the static mixture model
earthquakes and their magnitudes, known as a Gutenberf], in general case, the dynamic system is characterized by

Richter law is established for the world seismidi8} as well  linear form of the magnitude-frequency relatigig. 6). The
as for particular seismoactive regiof&, slope of the magnitude-frequency relation is constant for ar-
eas of the scale invariance and the catastrophe areas; it de-
logigN=a—bM. (18  pends on parameters of the mixture in the stability area
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FIG. 2. Transition from stability to catastroph@) density of
defects;(b) logarithm of the appearance intensitg) logarithm of
the density of events. Parameters of the mixtarg=0.2, a,=0,
a;=0.8. Healing:3,=0.1, c=0.9. Appearance intensity of the bot-
tom level:ay=0.1(curve J; ay=0.3(curve 3; a=0.5(curve 3;
ap=0.7 (curve 9; ay=0.9 (curve 5.

FIG. 3. Transition from scale invariance to catastropghgden-
sity of defects;(b) logarithm of the appearance intensifg) loga-
rithm of the density of events. Parameters of the mixtuae:
=0.4, a,=0, a;=0.6. Healing:8,=0.1, c=0.9. Appearance in-
tensity of the bottom levelag=0.1 (curve 1; ag=0.2 (curve 2;
ay=0.3 (curve 3; ap=0.5(curve 9; ap;=0.7 (curve 5.

(Fig. 6). Below we express the slope of magnitude-frequencyEq. (14) means, that the density of events also tends to zero
relation from equations determining the system behavior. as c'. Substituting this approximation in the magnitude-
frequency relation (21), we obtain the slope of the

L magnitude-frequency relation in the area of the scale invari-
A. Area of scale invariance

ance
In the area of the scale invariance the density of defects
p(l) tends to a constant value different from zero and unity _1 logyC
and the appearance intensiyl) tends to zero as'. Then 09103
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FIG. 5. Boundary of catastrophe., vs concentratiora;. (a)
Healing is fixed:8;=0.1, c=0.9; concentrations, are different:
a,=0.1 (curve 1, a,=0.2 (curve 23, a,=0.3 (curve 3, a,=0.4
(curve 4, a,=0.5(curve 5, a,=0.6 (curve 9. (b) a,=0 is fixed,
parameters of healing ar@,=0.05 (solid lineg and By,=0.1
(dashed lines c is indicated on the plot.

(c) B. Area of catastrophe

FIG. 4. Total catastroph¢a) density of defects(b) logarithm of In the area of catastrophe the appearance intensity
the appearance intensityc) logarithm of the density of events. tends to a constant value, when lelgrows. It follows from

Parameters of the mixturea; =0.4, 8,=0.5, a;=0.1. Healing:  Eq. (13) that the density of unbroken elements may be ex-
Bo=0.1, c=0.9. Appearance intensity of the bottom levely pressed as follows:

=0.01(curve D; ap=0.05 (curve 2; ag=0.1(curve 3; @y=0.5
(curve 4. B()

1-p(l)y= ———F~. 23
SRR 29
This slope is greater than unity wher<1; it is less than
unity whenc>1, and it is equal to unity only wheo=1.  Therefore the density of unbroken elements tends to zero as
Thus, the unity slope of the magnitude-frequency relatiort!, and Eq.(14) means that the density of events also tends to
means that the scale invariance of the destrucfipfl)  zero asc'. This asymptotics is similar to the asymptotic in
=consf is complemented by the scale invariance of thethe area of the scale invariance, therefore, we obtain the
healingB(l) =const. same slope of the magnitude-frequency relati2®).
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C. Area of stability a()=3a(l),

Let us consider Eq99)—(11) for t—o under conditions
p—0 anda—0. Up to the first order of smallness, the ap- ay(1)=0, (24)
pearance intensitieg,(l) are the following:

CY3(I):O
0 —
Substitutingey (1) in Eq. (7) we obtain
- | ™ a(l+1)[1-p(l+1)]=3a;a(H[1-py(1+1)]. (25
= -10 — \ 1 1
= The density of defectg;(I) may be expressed through(l)
%Z 7 5 and B(l), like Eq. (13), then
= .20 - 4
B(l+1)
3 - =
. N2 1=pu(I+1) a,(1+1)+B(1+1)" (26)
I ! l | I | Substituting Eq(26) in Eqg. (25) and taking into account Eq.
@ 0 5 ; 10 15 (24) we obtain
a

Baa(l)(@—p))c(a(l) +B(1)

a(l+D)[1-p(I1+1)]= 3a()+B(1)c

(27)

The density of events is defined by Ed), so we can change
a()(1—p(l)) to q(l). Substitutingg(l) and dividing by
B(1) we obtain from Eq(27) the following expression:

logloN (1)

q(l+1)  3a.c(e(l)+1)
ah) ~ 3e(h+c

(28)

wheree = «(1)/B(l) tends to zero in the area of the stability.
Thus, we obtain the following approximation:

q(l+1) 3

———=3a;.
0 — ach) '
Consequently, the density of everffl) falls with level as

-4 — (3a;)'. Substituting this approximation to the magnitude-
frequency relation(21) we obtain the slope

(29

log N(1)
|

B logipa;
09103 °

(30

12 —
In order to compare this slope with the slope of the
! | ' | ' | magnitude-frequency relation in the area of the scale invari-
0 5 10 15 ance it is necessary to estimate the concentradipm the
() l area of stability. Let us return to E¢25). Substituting the
expression for +p4(l1+1) given by Eq.(26) and similar
expression for +p(l+1), after some simple transforma-
tions we obtain

FIG. 6. Magnitude-frequency relation for different areas of sys-
tem behavior(a) stability; (b) scale invariance(c) catastrophe. We
consider leveld =15, ...,30; healing:8,=0.1, c=0.9; other pa-

rameters:(a) a;=0.1, a,=0., a3=0.9, @(=0.1 (curve J; a; 3a;, e(l+1)
=0.1, a,=0., a3=0.9, ¢(y=0.3 (curve 2; a,=0.1, a,=0.5, a; i . (31
=0.4, 2g=0.1(curve 3; a,=0.2,a,=0., a3=0.8, a;=0.1(curve c e()

4); a;,=0.2, a,=0., a3=0.8, a¢;=0.3 (curve 5. (b) a;,=0.35, a, . . . . .
=0, a;=0.65, ap=0.1 (curve 1: a,=0.4, a,=0, a;=0.6, arp The right side is less than unity, thus we obtain the desired

—0.1(curve 2; a;=0.4, a,=0.1, a;=0.5, arg=0.1 (curve 3; a, condition for concentrations of the mixture in the stability
=0.4, a,=0., a;=0.6, ay=0.3 (curve 4; (c) Five curves coin- &I€a

cided: a;,=0.2, a,=0, a3z=0.8, ¢;=0.7; a;,=0.4, a,=0, az

—06 CYO 07 al 07 az 0 a3 03 CYO 07 al 07 az c (32)
:0, a3:0.3, a0=0.2; a1:0.7, a2:0.2, a3:0.1, a0=0.2.
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Comparing slopes of the magnitude-frequency relation in the 3a(l)

areas of stability, scale invariance and catastrophe, and re-
specting the conditiot32), we obtain that the slope in the

a(1+1) (39

T 1p)+pAl)

stability area is always greater than the slope in the area of

the scale invariance or catastrophe. Similar result was previ-

ously obtained for the static mixed modél.

V. CONDITIONS OF SCALE INVARIANCE

Let us determine what restriction have to be imposed to

_ Ba(l)p(H[2—p(1)]
1+p(l)+p2(1)

a2(| + 1)

3a()p*(l)

T )

the mixture in order to obtain the area of the scale invariancesubstituting Eq(34) into Eq. (7) we obtain
The scale invariance exists when the appearance intensity

a(l) tends to zero likee', wherec is the scaling coefficient
of the healing intensity. The ratia(l)/B(1) may be ex-
pressed from Eq(13),

() p(l)

B I-p)” 33

In first order of «(l) appearance intensitieg, (I +1) look
as,

c(+p(h)+p*(N)[1-p(l1+1)] _
3

[1-p(+1)]

a(l+1)[1-p(l+1)]
~ 3a(

~1+p(1)+pA()

X{1—pa(l+1)}+azp?(1){1—ps(1+1)}1.

Expressing(l + 1) throughe, (1 +1) andB(l), dividing by
3a(N[1+p()+p?(1)] and using Eq(34) we can rewrite
this equation as follows:

[a{1—p(1+ D)} +azp()[2—p(l)]

(39

a;c(1+p()+p*()[1-p(D]?

~3a()B()*p(h[2—p()]+c(@+p()+pA(1)

asc(1+p(H)+p2(1)[1-p()?]

_ - . (36)
Ba(l)B() () +c(@+p(h)+p%(l))
Now we use the scale invarianggl +1)=p(l)=p and Eq.(33) for the ratioa(l)/B(l) and then obtain
c(1+p+p?) a,C(1+p+p?)(1-p) asc(1+p+p?)(1+p) -
3 3p%(2—p)(1-p) M+c(l+p+p?) 3p%(Ll-p) tc(ltp+p?)
|
The valuep is greater than zero. Substituting limjis=0 we c
obtain a<l-z-as. (40)

~c
a1—§.
Comparing with the boundary of the stability arg®), we

obtain the first condition of the scale invariance

(39

a;=c/3.

Now using this restriction we have

Substituting this boundary condition into E@7) we obtain
the restriction forag

c(1+p+p? _( C) c(1-p%(1-p)
3p?

D<p>={1— . -3

(39) a3>D(p)r (41)
where
c(1-p)(1+p)  c(1-pd(d-p) | w)
(2—p)+c(1—p ]\ 3p3+c(1-p®) 3p?2-p)+c(l-pd
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The functionD(p) is a monotone increasing function fpr  heterogeneity determine the difference of slopes of the
inside the interval 0,1] (Fig. 7). Therefore, Eq(41) means, Gutenberg-Richter law in different seismoactive regions.
that a; is greater than the minimum d(p) at[0,1]. The The static mixed modédlL,2] may be interpreted as a par-
minimum is reached fop=0, soa;=D(0). Considering ticular special case of dynamic mixed model with zero or
D(p) in the neighborhood of zero up to the first orderpof infinite lifetime of defects wheg(1)=1 or 3(1)=0 for all l.

we obtain the following restriction foa;: For both interpretations there is a scale invariance of healing,
therefore, results relevant to the static moddlare compa-
as= }_ E_ (43) rable with results obtained now for the dynamic one when
2 3 c=1. Itis possible to estimate the influence of the lifetime of

) ) ) . defects(which value is inverse to the healing intengifer
In order to obtain the scale invariance, both conditionse stationary system behavior. The introduction of a non-
(39) and (43) have to be satisfied simultaneously, thus, likeyjyia| healing brings to the appearance of the catastrophic
in the static model, the scale invariance exists only for highlysehayior for any concentrations of the mixture when appear-
heterogeneous conditions of the mixture. ance intensity of the bottom level, is big enough. There-

fore pure cases of stability and scale invariance realized in

VI. DISCUSSION AND CONCLUSIONS the static model transform to the two-mode behavior: stabil-

ity — catastrophe and scale invariance — catastrophe. Exis-
solution of the dynamical mixed model and we show that th ence of the catastrophic area is quite ”at!”a' and shows_that
the complete destruction of the system is always possible

critical behavior reflected in the linear form of the h h lied is bi h and that th
magnitude-frequency relation is a general case for DMM likeVnen the applied stress is big enough and that the system

it was for the static on2]. Consequently this model may be cannot be extremely resistant to the stress applied for a long

considered as the self-organized critical system. The selfime.

organized criticality in the dynamic model appears to be It is interesting that scaling parameter of healingov-

caused by the heterogeneity of the mixture — similar homo&Ms the slope of the magnitude-frequency relation in all ar-

geneous model was not criticEl8]. In order to obtain the eas of sr?/stembl_JI.ehawor var;]en pe}ramleters ?f tt]he m|xtgredsat-
scale invariance of defects the heterogeneity has to be :stro%7 to the stability area. The unity slope of the magnitude-

We have investigated scaling properties of the stationar

enough. This result is important in order to understand thé' ca4€ncy relation is really a very specific case of the critical
origin of the criticality of natural systems, in particular, of eha"'OT- I gsks_the fsc(:jalfe mvarllancbe notl onl¥/ for tlhe.actual
seismicity. The static model describe the destruction Withdestruc'tlonkg ePS|ty (IJ ?cehctsp( ), u_lt_hg S]? or relaxing
infinite lifetime of defects and therefore it is more coincidentpmpe_rt'es[ ealing5(1)] of the system. This fact attracts our
to the description of laboratory experiments of sample dedttention to the problem of relaxation for the lithosphere of

struction than to the modeling of the seismic process. Théhe Earth and its relation with critical properties of the seis-

present dynamic model is not yet a perfect model of seismic™'C PrOCEsS. . o .

ity, however, it is more realistic than the static one and may Let us consider pqsglble applications of obtained resul't.s to
be applied for modeling of average statistical properties of ghe problem of prediction of strong events. In the Sta.b'“ty
stable seismic regime. Obtained results allow to suppose th&{€2 the change of the appearance intengitis reflected in

the origin of criticality in seismicity could be related with € change of the additive constant of the magnitude-

heterogeneity of the lithosphere. Different parameters of thfauency relation; the increasing instability to the applied
stress is reflected in the slope of the magnitude-frequency

relation(if a; grows or also in the additive constafif a; is
constant and, grows [Fig. 6@]. Thus, in the area of sta-
bility any change of parameters that leads to the increasing
of the probability of strong events is reflected in the change
of the magnitude-frequency relation and a successful predic-
tion is possible.
i The slope of magnitude-frequency relation has the same
constant value in both areas of the catastrophe and the scale
invariance. The asymptotical behavior for the infinite size of
the systenl. —« has a constant slof&ig. 6(b) and(c)]. In
the area of scale invariance the additive constant grows when
the appearance intensity of the bottom lewglor the con-
centration of the mixture, grow [Fig. b)]; in the area of
the catastrophe it does not chari§ég. 6(c)]. However there
01F ] is a strong difference between the catastrophe and the scale
0 , , , , , , , , , invariance — the place of a future big event is well localized
0 01 02 03 04 0‘-)5 06 07 08 09 1 in the former case; the relative size of the risky area is close
to zero[its probability is equal to + p(l)]. This difference
FIG. 7. FunctionD(p) for different values of healing param- is important for a spatial prediction of strong events and
eterc. allows to reduce the ratio of alarms in space.
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We can conclude that the predictability may be differentinvariance or catastrophe. It makes the study of relaxing
for different kinds of the system behavior although all theseproperties of the system important for problems related with
kinds demonstrate a linear magnitude-frequency relationprediction of strong events, in particular, for the earthquake
The slope of the magnitude-frequency relation reflects therediction.
change of system parameters only in the area of stability; the
additive constant has some deviations in areas of stability
and scale invariance. Therefore it is important to recognize
what kind of system behavior is observed. Unlike static This publication was supported by a subcontract with
model[1,2], the slope of the magnitude-frequency relationCornell University, Geological Sciences, under EAR-
cannot be considered as an indicator of the scale invarianc8804859 from the National Science Foundation and admin-
because it depends on the scaling parameter of healing istrated by the U.S. Civilian Research & Development Foun-
However, if the healing parametercould be estimated, the dation for the Independent States of the Former Soviet Union
area of stability would be easy separated from that of scal€CRDP).
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