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Criticality in a dynamic mixed system
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We suggest a dynamic generalization of the simplest static hierarchical mixed model introduced by
Shnirman and Blanter@Phys. Rev. Lett.81, 5445 ~1998!; Phys. Rev. E.60, 5111 ~1998!. We show that the
stationary solution of the dynamic mixed model~DMM ! demonstrates, in general, a linear form of the
magnitude-frequency relation and may be considered a self-organized critical system. The dynamic mixed
model demonstrates three principal kinds of system behavior: stability, catastrophe, and scale invariance. We
show that the catastrophic area exists for all parameters of the mixture, and obtain three analytical expressions
for boundary conditions of the stability and the scale invariance domains. As in the static model scale invari-
ance appears as a result of a strong heterogeneity of the mixture. We describe how the magnitude-frequency
relation reflects parameters of the heterogeneity and healing conditions for different domains of system behav-
ior. Deviation of the DMM from the static mixed model and possible applications to earthquake prediction are
discussed.

DOI: 10.1103/PhysRevE.64.056123 PACS number~s!: 05.40.2a, 91.30.Bi
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I. INTRODUCTION

Considering self-similar hierarchical models we are int
ested in two problems: the origin of self-organized critical
~SOC! and its possible relation with prognostic features
the system. Besides the theoretical interest these prob
have wide applications in geophysics, in particular in ear
quake prediction. The well-known Gutenberg-Richter la
establishes the linear form of the magnitude-frequency r
tion for earthquakes@3#. It is a basic statistical relation o
seismology usually associated with the self-organized c
cality phenomenon@4,5#, however, its origin in seismicity is
not completely clear. Statistical observations show that
slope of Gutenberg-Richter law is different for different se
moactive regions and period of time@6#. The slope for main
shocks differs from the slope when aftershocks are includ
The slope for aftershocks series differs from the slope
foreshock series. The unity slope was obtained only for
average world seismicity@7#. Thus, the criticality of seismic-
ity is more complicated than the self-organized critical
realized, for example, in the sand-pile model@4#. It was ex-
pected that the slope of Gutenberg-Richter law may be
lated with fractal scaling properties of the system of fau
however, it is not proved@8#.

Scaling properties of seismicity are related with the ea
quake prediction: variations of the slope and the upwa
downward bend of the magnitude-frequency relation can
successfully used for the earthquake prediction@9,10#; sev-
eral algorithms of earthquake prediction use the variation
seismic activity as a prognostic functional@11,12# that may
be also reformulated in terms of variation of the magnitu
frequency relation. The exact knowledge of the nature
scaling laws in seismicity is not necessary for the applicat
to the earthquake prediction but may be useful for the
proving of existing algorithm as well as for the understan
ing of the origin of successes and fails. In the present pa
we investigate scaling properties of the dynamic mix
model ~DMM ! and try to relate them with predictability o
1063-651X/2001/64~5!/056123~10!/$20.00 64 0561
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strong events extending results obtained for the static
@13#.

Stable critical behavior is obtained for different mode
referred to as self-organized critical systems. For some
them the origin of SOC is understood@5,14#. A lot of work
are recently devoted to investigations of the origin of SOC
sand-pile models@4# and describe possible ways to obta
deviations from criticality for such systems@15#. The self-
organized criticality may be also obtained as a result o
feedback relation that attracts the system to the critical p
and governs a linear form of the magnitude-frequency re
tion in average@9,16#. In @1# we have suggested a stat
hierarchical mixed model and demonstrated that the s
organized criticality appears as a result of strong heteroge
ity of destruction conditions. However, the static model
slightly related with seismic process. Now we suggest
dynamic model and show that the heterogeneity determ
criticality as a general form of system behavior. In particul
scale invariance appears in the DMM as a result of stro
heterogeneity of the resistance to the stress.

Critical behavior of the system is indicated by a line
magnitude-frequency relation. The slope of the magnitu
frequency relation may be constant in time, like it is for t
sand-pile model@4# or not, like in the case of the attractiv
point @9#. The origin of different slopes of the magnitude
frequency relation in seismicity is not more clear than t
origin of criticality itself. Assuming that the heterogeneity
the origin of SOC, it is easy to obtain different slopes d
pending on parameters of heterogeneity@2#. Below we show
that for the stationary solution of the DMM the slope
magnitude-frequency relation reflects parameters of het
geneity, like it was for the static model, but it also depen
on relaxing features of the system.

Predictability of strong events in SOC models was co
sidered by Pepke and Carlson@17#. They have shown tha
different predictability of strong events may be obtained a
plying the same algorithm of prediction to different SO
systems. Self-organized criticality of the sand-pile model@4#
©2001 The American Physical Society23-1
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is characterized by the bad predictability of events of la
size @17#. When the linear form of the magnitude-frequen
relation is a result of attractive critical point, then th
magnitude-frequency relation depends on time and its t
poral variation allows to predict strong events in the syst
@9#. In the static hierarchical mixed model@2# the change of
system parameters is reflected in the magnitude-freque
relation that allows to predict the increasing probability
strong events@13#. For the present dynamic mixed model w
show how relaxing features of the system affect progno
properties of large-size events.

We describe the model in Sec. II and its behavior in g
eral case in Sec. III. The slope of magnitude-frequency r
tion is derived from system equations for different doma
of model behavior in Sec. IV. Boundary conditions of t
scale invariance domain are obtained in Sec. V. Section
contains conclusions and discussion of obtained result
respect to the earthquake prediction.

II. MODEL

We suggest a hierarchical model — DMM — that may
considered as a generalization both of static mixed mo
@1,2# and of the homogeneous hierarchical model of def
development@18#.

We consider a hierarchical model with branching num
n53 and two possible state of elements: broken~defects!
and unbroken one~Fig. 1!. Evolution of the system is gov
erned by two opposite process: appearance of new de
and healing of old defects. An unbroken element transi
the defect state, when a critical configuration of defects
pears in the relevant group of three elements of the prev
level. This rule determines the inverse cascade of destruc
in the model.

A. Heterogeneity

In the homogeneous model@18# there was the same criti
cal configuration for all elements of the system: two or mo
defects in a group of three elements determine the de
state of the relevant element of the superior level. Follow
@1,2# we assume that there are three kinds of elements in
system: the critical configuration forkth kind of element

FIG. 1. Hierarchical system with branching numbern53.
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containsk or more defects in the relevant group of the inf
rior level. Different kinds of elements are mixed with co
centrationsak , where a11a21a351. We assume self-
similarity of the mixture, therefore, concentrationsak are the
same for all levels of the system. A density of defects ofkth
kind at level l in time t is denoted aspk( l ,t), then the total
density of defects is expressed as a weighted sum ofpk

p~ l ,t !5a1p1~ l ,t !1a2p2~ l ,t !1a3p3~ l ,t !. ~1!

B. Relaxation

The healing process determines the transition of bro
elements~defects! back to the unbroken state. The healing
similar for all kinds of elements and depends only on t
scale level. The healing intensityb( l ) at levell is defined as
follows:

b~ l !5b0cl . ~2!

Parameters of healing govern relaxing properties of
system.

C. Kinetic equations

Unlike homogeneous system, the present model has t
kinds of appearance intensityak( l ,t) relevant to each kindk
of element, kinetic equations may be written for each kind
element

pk~ l ,t11!5pk~ l ,t !@12b~ l !#1@12pk~ l ,t !#ak~ l ,t !.
~3!

The second term in right side of Eq.~3! denotes the density
of new defects, referred to as events, so the density of ev
of kth kind qk( l ,t) is expressed as follows:

qk~ l ,t11!5@12pk~ l ,t !#ak~ l ,t !. ~4!

The density of all events at levell in time t is a weighted sum
of qk( l ,t)

q~ l ,t !5a1q1~ l ,t !1a2q2~ l ,t !1a3q3~ l ,t !. ~5!

A kinetic equation for the density of all kinds of defects

p~ l ,t11!5p~ l ,t !@12b~ l !#1@12p~ l ,t !#a~ l ,t !, ~6!

wherea( l ,t) is by definition the appearance intensity of ne
defects.

D. Appearance of new defects

The value of the appearance intensitya( l ,t) may be ob-
tained by substitution of Eqs.~1! and~3! into Eq. ~6!, and it
satisfies to the following equation:

a~ l ,t !@12p~ l ,t !#5 (
k51

3

akak~ l ,t !@12pk~ l ,t !#. ~7!

The bottom level of the system differs from others, beca
defects randomly appears at this level and all eleme
3-2



o

al

two
ent
e.
se-
ear-

CRITICALITY IN A DYNAMIC MIXED SYSTEM PHYSICAL REVIEW E 64 056123
are similar. Appearance intensity of new defects at the b
tom level is assumed to be constanta(1,t)5a0.

It follows from Eqs.~4!, ~5!, and ~7! that the density of
events is

q~ l ,t !5@12p~ l ,t !#a~ l ,t !. ~8!

Appearance intensities of new defectsak( l 11,t) at level
l 11 are determined by the conditional probability of critic
configurations of the previous levell provided that a new
th
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t-defect can appear in a group of three elements of levell. The
latter condition establishes a relation between defects of
consequent levels: the probability of an unbroken elem
relevant to a group of three defects is assumed negligibl

We assume that different kinds of elements of two con
quent levels are distributed independently, therefore, app
ance intensities of the superior levelak( l 11,t) are calcu-
lated using the appearance intensitya( l ,t) and the density of
defectsp( l ,t) of the previous level
a1~ l 11,t !5
@12p~ l ,t !#3@a3~ l ,t !13a2~ l ,t !$12a~ l ,t !%13a~ l ,t !$12a~ l ,t !%2#

12p3~ l ,t !

1
3p~ l ,t !@12p~ l ,t !#2@a2~ l ,t !12a~ l ,t !$12a~ l ,t !%#

12p3~ l ,t !
1

3a~ l ,t !p2~ l ,t !$12p~ l ,t !%

12p3~ l ,t !
, ~9!

a2~ l 11,t !5
@12p~ l ,t !#3@a3~ l ,t !13a2~ l ,t !$12a~ l ,t !%#

12p3~ l ,t !
1

3p~ l ,t !@12p~ l ,t !#2@a2~ l ,t !12a~ l ,t !$12a~ l ,t !%#

12p3~ l ,t !

1
3a~ l ,t !p2~ l ,t !@12p~ l ,t !#

12p3~ l ,t !
, ~10!

a3~ l 11,t !5
@12p~ l ,t !#3a3~ l ,t !13p~ l ,t !@12p~ l ,t !#2a2~ l ,t !

12p3~ l ,t !
1

3a~ l ,t !p2~ l ,t !@12p~ l ,t !#

12p3~ l ,t !
. ~11!
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When concentrations of the mixtureak , parameters of
healing (b0 ,c), and the appearance intensity (a0) are fixed,
then the system is governed by kinetic equations and
inverse cascade of appearance intensities. There is a sta
ary solution of this equations fort→`. Densities of defects
densities of events, and appearance intensities of new de
tend to their limits when time grows:p( l ,t)→p( l ), q( l ,t)
→q( l ), a( l ,t)→a( l ). Below we investigate scaling prope
ties of the stationary solution@p( l ),q( l ),a( l )# for different
parameters: concentrations of the mixtureak and the appear
ance intensity of the bottom levela0. Parameters of healing
are also fixed, but their influence to the system behavio
estimated.

III. SYSTEM BEHAVIOR

Let us pass to limit fort→` in the kinetic equation~6!.
The limit density of defectsp( l ) at level l satisfies the fol-
lowing equation:

p~ l !b~ l !5@12p~ l !#a~ l !. ~12!

It means that the appearance of new defects and the he
of old defects compensate one another. Densities of def
and events may be expressed from Eqs.~8! and ~12!:
e
on-

cts

is

ing
cts

p~ l !5
a~ l !

a~ l !1b~ l !
, ~13!

q~ l !5
a~ l !b~ l !

a~ l !1b~ l !
. ~14!

If c,1 then the healing intensity tends to zero for top lev
of the system~2!. In this case Eq.~14! means that the densit
of eventsq( l ) always tends to zero, when levell grows and
events of high scale are less probable than small events.
the most natural situation, so we mainly consider this pa
metric areac,1 with some remarks about system behav
under another conditions.

In contrast to the density of events, the density of defe
p( l ) depends on the relation between appearance and he
intensities. Three kinds of the asymptotic behavior are p
sible when levell grows:

Stability. The appearance intensitya( l ) tends to zero
faster than the healing intensityb( l ). Then density of defects
p( l ) also tends to zero, when levell grows p( l )→0. This
kind of behavior is referred to as astability, because top
levels of the system remain unbroken.

Scale invariance.The appearance intensitya( l ) tends to
zero, similar to the healing intensityb( l ). In this case the
density of defectsp( l ) tends to a constant value differen
3-3
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from zero and unity. This kind of behavior is referred to a
scale invariancebecause all scale levels of the system
similarly destroyed.

Catastrophe.The appearance intensitya( l ) tends to a
positive constant value or it tends to zero slower than
healing intensityb( l ). Then the density of defectsp( l ) tends
e
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to unity. This kind of behavior is referred to as acatastrophe,
because top levels of the system are completely destroye
this model catastrophic behavior is always realized fora
→const, however, it is not obligatory in general case.

Let us consider Eq.~7! for a( l ) close to unity. In first
order of @12a( l )# we obtain
ak~ l 11!5
@12p~ l !#3a~ l !313p~ l !@12p~ l !#2a2~ l !13p2@12p~ l !#a~ l !

12p3~ l !
, ~15!

for all k51,2,3. It follows from Eq.~7! that 12p( l 11) is equal to zero, otherwise dividing by 12p( l 11) we obtain that the
appearance intensitya( l 11) also satisfies to Eq.~15!. The former case means catastrophe; in the second case dividing bya( l )
after simple transformation we obtain

a~ l 11!

a~ l !
5

@11p~ l !$12a~ l !%#21@11p~ l !$12a~ l !%#1p~ l !

11p~ l !1p2~ l !
. ~16!
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It means thata( l 11) is greater thana( l ), when a( l ) is
close to unity, therefore the catastrophic behavior always
ists when the appearance intensity of the bottom levela0 is
big enough. It is not true for other kinds of behavior. D
pending on concentrations of the mixture three kinds of
havior are realized whena0 run from zero to unity.

Transition from stability to catastrophe.If a0,acr then
densities of defects tend to zero, and ifa0.acr then densi-
ties of defects tend to unity. In the critical pointa05acr
densities of defectsp( l ) tend to a constant value defined b
Eq. ~13! ~Fig. 2!. The scale invariance exists in a single po
of phase transition.

Transition from scale invariance to catastrophe.If a0
<acr then densities of defects tend to a constant value
ferent from zero and unity, and ifa0.acr then densities of
defects tend to unity~Fig. 3!.

Total catastrophe.For all values ofa0 densities of defects
p( l ) tend to unity~Fig. 4!.

The critical pointacr determines the boundary of cata
trophe and depends on concentrationsa1k of the mixture
and parameters of healing~Fig. 5!.

IV. MAGNITUDE-FREQUENCY RELATION

The magnitude is a logarithmic measure of the energy
earthquakes. A linear relation between the earthquake m
nitude of and the size of the earthquake source area is e
lished in average@19#,

log10S'M1const. ~17!

A linear relation between the logarithm of the number
earthquakes and their magnitudes, known as a Gutenb
Richter law is established for the world seismicity@3# as well
as for particular seismoactive regions@6#,

log10N5a2bM. ~18!
x-
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t
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f
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f
rg-

In order to compare model result with seismicity we ha
to define the magnitude-frequency relation for the model.
assume that the size of elements in the system grows
level S( l )5S03l and the number of elements similarly fal
with level Ne( l )5C3L2 l (C denotes number of elements
the highest levelL of the system!. Respecting the relation 17
between the magnitude of an earthquake and the linear
of its source area, we consider the magnitude as a chara
istic of the defect’s size at levell,

M ~ l !5 l log103 ~19!

~we use decimal logarithm in respect to the geophysical
dition!. Expressing the average number of events at the le
l, as follows:

N~ l !5C3L2 lq~ l !, ~20!

we obtain from Eqs.~20! and ~19! the magnitude-frequency
relation for events in our model, which is the analog of t
Gutenberg-Richter law~18! for seismicity,

log10N~ l !52M ~ l !1 log10q~ l !1const. ~21!

It is obvious that the form of the magnitude-frequen
relation is completely determined by the density of eve
q( l ), which depend on levell. A power form convergence o
densities q( l ) to zero determines a linear form of th
magnitude-frequency relation. Like the static mixture mod
@2#, in general case, the dynamic system is characterized
linear form of the magnitude-frequency relation~Fig. 6!. The
slope of the magnitude-frequency relation is constant for
eas of the scale invariance and the catastrophe areas; i
pends on parameters of the mixture in the stability a
3-4
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~Fig. 6!. Below we express the slope of magnitude-frequen
relation from equations determining the system behavior

A. Area of scale invariance

In the area of the scale invariance the density of defe
p( l ) tends to a constant value different from zero and un
and the appearance intensitya( l ) tends to zero ascl . Then

FIG. 2. Transition from stability to catastrophe:~a! density of
defects;~b! logarithm of the appearance intensity;~c! logarithm of
the density of events. Parameters of the mixture:a150.2, a250,
a350.8. Healing:b050.1, c50.9. Appearance intensity of the bo
tom level:a050.1 ~curve 1!; a050.3 ~curve 2!; a050.5 ~curve 3!;
a050.7 ~curve 4!; a050.9 ~curve 5!.
05612
y
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Eq. ~14! means, that the density of events also tends to z
as cl . Substituting this approximation in the magnitud
frequency relation ~21!, we obtain the slope of the
magnitude-frequency relation in the area of the scale inv
ance

b512
log10c

log103
. ~22!

FIG. 3. Transition from scale invariance to catastrophe:~a! den-
sity of defects;~b! logarithm of the appearance intensity;~c! loga-
rithm of the density of events. Parameters of the mixture:a1

50.4, a250, a350.6. Healing:b050.1, c50.9. Appearance in-
tensity of the bottom level:a050.1 ~curve 1!; a050.2 ~curve 2!;
a050.3 ~curve 3!; a050.5 ~curve 4!; a050.7 ~curve 5!.
3-5
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This slope is greater than unity whenc,1; it is less than
unity whenc.1, and it is equal to unity only whenc51.
Thus, the unity slope of the magnitude-frequency relat
means that the scale invariance of the destruction@p( l )
5const# is complemented by the scale invariance of t
healingb( l )5const.

FIG. 4. Total catastrophe:~a! density of defects;~b! logarithm of
the appearance intensity;~c! logarithm of the density of events
Parameters of the mixture:a150.4, a250.5, a350.1. Healing:
b050.1, c50.9. Appearance intensity of the bottom level:a0

50.01 ~curve 1!; a050.05 ~curve 2!; a050.1 ~curve 3!; a050.5
~curve 4!.
05612
n

B. Area of catastrophe

In the area of catastrophe the appearance intensitya( l )
tends to a constant value, when levell grows. It follows from
Eq. ~13! that the density of unbroken elements may be
pressed as follows:

12p~ l !5
b~ l !

a~ l !1b~ l !
. ~23!

Therefore the density of unbroken elements tends to zer
cl , and Eq.~14! means that the density of events also tends
zero ascl . This asymptotics is similar to the asymptotic
the area of the scale invariance, therefore, we obtain
same slope of the magnitude-frequency relation~22!.

FIG. 5. Boundary of catastropheacr vs concentrationa1. ~a!
Healing is fixed:b050.1, c50.9; concentrationsa2 are different:
a250.1 ~curve 1!, a250.2 ~curve 2!, a250.3 ~curve 3!, a250.4
~curve 4!, a250.5 ~curve 5!, a250.6 ~curve 6!. ~b! a250 is fixed,
parameters of healing areb050.05 ~solid lines! and b050.1
~dashed lines!, c is indicated on the plot.
3-6
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C. Area of stability

Let us consider Eqs.~9!–~11! for t→` under conditions
p→0 anda→0. Up to the first order of smallness, the a
pearance intensitiesak( l ) are the following:

FIG. 6. Magnitude-frequency relation for different areas of s
tem behavior:~a! stability; ~b! scale invariance;~c! catastrophe. We
consider levelsl 515, . . .,30; healing:b050.1, c50.9; other pa-
rameters:~a! a150.1, a250., a350.9, a050.1 ~curve 1!; a1

50.1, a250., a350.9, a050.3 ~curve 2!; a150.1, a250.5, a3

50.4, a050.1 ~curve 3!; a150.2, a250., a350.8, a050.1 ~curve
4!; a150.2, a250., a350.8, a050.3 ~curve 5!. ~b! a150.35, a2

50, a350.65, a050.1 ~curve 1!; a150.4, a250, a350.6, a0

50.1 ~curve 2!; a150.4, a250.1, a350.5, a050.1 ~curve 3!; a1

50.4, a250., a350.6, a050.3 ~curve 4!; ~c! Five curves coin-
cided: a150.2, a250, a350.8, a050.7; a150.4, a250, a3

50.6, a050.7; a150.7, a250, a350.3, a050.7; a150.7, a2

50, a350.3, a050.2; a150.7, a250.2, a350.1, a050.2.
05612
a1~ l !53a~ l !,

a2~ l !50, ~24!

a3~ l !50.

Substitutingak( l ) in Eq. ~7! we obtain

a~ l 11!@12p~ l 11!#53a1a~ l !@12p1~ l 11!#. ~25!

The density of defectsp1( l ) may be expressed througha1( l )
andb( l ), like Eq. ~13!, then

12p1~ l 11!5
b~ l 11!

a1~ l 11!1b~ l 11!
. ~26!

Substituting Eq.~26! in Eq. ~25! and taking into account Eq
~24! we obtain

a~ l 11!@12p~ l 11!#5
3a1a~ l !„12p~ l !…c„a~ l !1b~ l !…

3a~ l !1b~ l !c
.

~27!

The density of events is defined by Eq.~4!, so we can change
a( l )(12p( l )) to q( l ). Substitutingq( l ) and dividing by
b( l ) we obtain from Eq.~27! the following expression:

q~ l 11!

q~ l !
5

3a1c„«~ l !11…

3«~ l !1c
, ~28!

where«5a( l )/b( l ) tends to zero in the area of the stabilit
Thus, we obtain the following approximation:

q~ l 11!

q~ l !
53a1 . ~29!

Consequently, the density of eventsq( l ) falls with level as
(3a1) l . Substituting this approximation to the magnitud
frequency relation~21! we obtain the slope

b52
log10a1

log103
. ~30!

In order to compare this slope with the slope of t
magnitude-frequency relation in the area of the scale inv
ance it is necessary to estimate the concentrationa1 in the
area of stability. Let us return to Eq.~25!. Substituting the
expression for 12p1( l 11) given by Eq.~26! and similar
expression for 12p( l 11), after some simple transforma
tions we obtain

3a1

c
5

«~ l 11!

«~ l !
. ~31!

The right side is less than unity, thus we obtain the desi
condition for concentrations of the mixture in the stabili
area

a1,
c

3
. ~32!

-

3-7
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Comparing slopes of the magnitude-frequency relation in
areas of stability, scale invariance and catastrophe, and
specting the condition~32!, we obtain that the slope in th
stability area is always greater than the slope in the are
the scale invariance or catastrophe. Similar result was pr
ously obtained for the static mixed model@2#.

V. CONDITIONS OF SCALE INVARIANCE

Let us determine what restriction have to be imposed
the mixture in order to obtain the area of the scale invarian
The scale invariance exists when the appearance inte
a( l ) tends to zero likecl , wherec is the scaling coefficien
of the healing intensity. The ratioa( l )/b( l ) may be ex-
pressed from Eq.~13!,

a~ l !

b~ l !
5

p~ l !

12p~ l !
. ~33!

In first order ofa( l ) appearance intensitiesak( l 11) look
as,
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a1~ l 11!5
3a~ l !

11p~ l !1p2~ l !
, ~34!

a2~ l 11!5
3a~ l !p~ l !@22p~ l !#

11p~ l !1p2~ l !
,

a3~ l 11!5
3a~ l !p2~ l !

11p~ l !1p2~ l !
.

Substituting Eq.~34! into Eq. ~7! we obtain

a~ l 11!@12p~ l 11!#

5
3a~ l !

11p~ l !1p2~ l !
†a1$12p1~ l 11!%1a2p~ l !@22p~ l !#

3$12p2~ l 11!%1a3p2~ l !$12p3~ l 11!%‡. ~35!

Expressingpk( l 11) throughak( l 11) andb( l ), dividing by
3a( l )@11p( l )1p2( l )# and using Eq.~34! we can rewrite
this equation as follows:
c„11p~ l !1p2~ l !…@12p~ l 11!#

3
5@12p~ l 11!#2

a2c„11p~ l !1p2~ l !…@12p~ l !#2

3a~ l !b~ l !21p~ l !@22p~ l !#1c„11p~ l !1p2~ l !…

2
a3c„11p~ l !1p2~ l !…@12p~ l !2#

3a~ l !b~ l !21p2~ l !1c„11p~ l !1p2~ l !…
. ~36!

Now we use the scale invariancep( l 11)5p( l )5p and Eq.~33! for the ratioa( l )/b( l ) and then obtain

c~11p1p2!

3
512

a2c~11p1p2!~12p!

3p2~22p!~12p!211c~11p1p2!
2

a3c~11p1p2!~11p!

3p3~12p!211c~11p1p2!
. ~37!
The valuep is greater than zero. Substituting limitsp50 we
obtain

a15
c

3
. ~38!

Comparing with the boundary of the stability area~32!, we
obtain the first condition of the scale invariance

a1>c/3. ~39!

Now using this restriction we have
a2<12
c

3
2a3 . ~40!

Substituting this boundary condition into Eq.~37! we obtain
the restriction fora3

a3>D~p!, ~41!

where
D~p!5F12
c~11p1p2!

3
2S 12

c

3D c~12p3!~12p!

3p2~22p!1c~12p3!
G S c~12p3!~11p!

3p31c~12p3!
2

c~12p3!~12p!

3p2~22p!1c~12p3!
D 21

. ~42!
3-8
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The functionD(p) is a monotone increasing function forp
inside the interval@0,1# ~Fig. 7!. Therefore, Eq.~41! means,
that a3 is greater than the minimum ofD(p) at @0,1#. The
minimum is reached forp50, so a3>D(0). Considering
D(p) in the neighborhood of zero up to the first order ofp
we obtain the following restriction fora3:

a3>
1

2
2

c

3
. ~43!

In order to obtain the scale invariance, both conditio
~39! and ~43! have to be satisfied simultaneously, thus, li
in the static model, the scale invariance exists only for hig
heterogeneous conditions of the mixture.

VI. DISCUSSION AND CONCLUSIONS

We have investigated scaling properties of the station
solution of the dynamical mixed model and we show that
critical behavior reflected in the linear form of th
magnitude-frequency relation is a general case for DMM l
it was for the static one@2#. Consequently this model may b
considered as the self-organized critical system. The s
organized criticality in the dynamic model appears to
caused by the heterogeneity of the mixture — similar hom
geneous model was not critical@18#. In order to obtain the
scale invariance of defects the heterogeneity has to be st
enough. This result is important in order to understand
origin of the criticality of natural systems, in particular,
seismicity. The static model describe the destruction w
infinite lifetime of defects and therefore it is more coincide
to the description of laboratory experiments of sample
struction than to the modeling of the seismic process. T
present dynamic model is not yet a perfect model of seism
ity, however, it is more realistic than the static one and m
be applied for modeling of average statistical properties o
stable seismic regime. Obtained results allow to suppose
the origin of criticality in seismicity could be related wit
heterogeneity of the lithosphere. Different parameters of

FIG. 7. FunctionD(p) for different values of healing param
eterc.
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heterogeneity determine the difference of slopes of
Gutenberg-Richter law in different seismoactive regions.

The static mixed model@1,2# may be interpreted as a pa
ticular special case of dynamic mixed model with zero
infinite lifetime of defects whenb( l )51 or b( l )50 for all l.
For both interpretations there is a scale invariance of heal
therefore, results relevant to the static model@2# are compa-
rable with results obtained now for the dynamic one wh
c51. It is possible to estimate the influence of the lifetime
defects~which value is inverse to the healing intensity! for
the stationary system behavior. The introduction of a n
trivial healing brings to the appearance of the catastrop
behavior for any concentrations of the mixture when appe
ance intensity of the bottom levela0 is big enough. There-
fore pure cases of stability and scale invariance realized
the static model transform to the two-mode behavior: sta
ity — catastrophe and scale invariance — catastrophe. E
tence of the catastrophic area is quite natural and shows
the complete destruction of the system is always poss
when the applied stress is big enough and that the sys
cannot be extremely resistant to the stress applied for a
time.

It is interesting that scaling parameter of healingc gov-
erns the slope of the magnitude-frequency relation in all
eas of system behavior when parameters of the mixture
isfy to the stability area. The unity slope of the magnitud
frequency relation is really a very specific case of the criti
behavior. It asks the scale invariance not only for the act
destruction@density of defectsp( l )], but also for relaxing
properties@healingb( l )] of the system. This fact attracts ou
attention to the problem of relaxation for the lithosphere
the Earth and its relation with critical properties of the se
mic process.

Let us consider possible applications of obtained result
the problem of prediction of strong events. In the stabil
area the change of the appearance intensitya0 is reflected in
the change of the additive constant of the magnitu
frequency relation; the increasing instability to the appli
stress is reflected in the slope of the magnitude-freque
relation~if a1 grows! or also in the additive constant~if a1 is
constant anda2 grows! @Fig. 6~a!#. Thus, in the area of sta
bility any change of parameters that leads to the increas
of the probability of strong events is reflected in the chan
of the magnitude-frequency relation and a successful pre
tion is possible.

The slope of magnitude-frequency relation has the sa
constant value in both areas of the catastrophe and the s
invariance. The asymptotical behavior for the infinite size
the systemL→` has a constant slope@Fig. 6~b! and~c!#. In
the area of scale invariance the additive constant grows w
the appearance intensity of the bottom levela0 or the con-
centration of the mixturea2 grow @Fig. 6~b!#; in the area of
the catastrophe it does not change@Fig. 6~c!#. However there
is a strong difference between the catastrophe and the s
invariance — the place of a future big event is well localiz
in the former case; the relative size of the risky area is cl
to zero@its probability is equal to 12p( l )]. This difference
is important for a spatial prediction of strong events a
allows to reduce the ratio of alarms in space.
3-9
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We can conclude that the predictability may be differe
for different kinds of the system behavior although all the
kinds demonstrate a linear magnitude-frequency relat
The slope of the magnitude-frequency relation reflects
change of system parameters only in the area of stability;
additive constant has some deviations in areas of stab
and scale invariance. Therefore it is important to recogn
what kind of system behavior is observed. Unlike sta
model @1,2#, the slope of the magnitude-frequency relati
cannot be considered as an indicator of the scale invaria
because it depends on the scaling parameter of healinc.
However, if the healing parameterc could be estimated, the
area of stability would be easy separated from that of sc
.

al

-
J,

ics

,
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invariance or catastrophe. It makes the study of relax
properties of the system important for problems related w
prediction of strong events, in particular, for the earthqua
prediction.
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